Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sian C. Davies,* Matt C. Smith and David J. Evans

Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, England

Correspondence e-mail:
sianc.davies@bbsrc.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.043$
$w R$ factor $=0.097$
Data-to-parameter ratio $=24.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,2-Bis(diphenylthioarsinoyl)ethane

The structure of the title compound, $\left[\mathrm{As}_{2} \mathrm{~S}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]$, which has twofold symmetry, features an $\mathrm{As}=\mathrm{S}$ bond distance of 2.0674 (13) \AA.

Received 2 April 2004 Accepted 7 May 2004 Online 15 May 2004

Comment

The title compound, (I), was prepared for use as a ligand in novel nickel complexes (Smith, 2002) as part of a wider study to prepare synthetic compounds with features similar to those of the active sites of the nickel-containing enzymes: hydrogenase, carbon monoxide dehydrogenase and acetyl-CoA synthase (Smith et al., 2003; Evans \& Pickett, 2003).

(I)

The structure of (I) (Fig. 1 and Table 1) lies about a twofold rotation axis which bisects the ethane bond. The As atom is tetrahedrally coordinated, with $\mathrm{S}-\mathrm{As}-\mathrm{C}$ angles lying in the range 111.51 (13)-114.04 (12) ${ }^{\circ}$ and $\mathrm{C}-\mathrm{As}-\mathrm{C}$ angles lying in the range $105.60(17)-106.92(15)^{\circ}$. Bond lengths within the molecule are as expected, with As-C lengths lying in the range 1.924 (4)-1.946 (3) \AA and As-S being 2.0674 (13) \AA. The torsion angle for the ethane bridge $\left[\mathrm{As}-\mathrm{C}-\mathrm{C}^{\mathrm{i}}-\mathrm{As}^{\mathrm{i}}\right.$; symmetry code (i) $1-x, y, \frac{1}{2}-z$] is 156.4 (2) ${ }^{\circ}$.

The molecules, separated by normal van der Waals contacts, are arranged so that circular channels run parallel to the crystallographic a axis (bounded by four molecules) and rectangular channels run parallel to the c axis (bounded by eight molecules), as highlighted in the two views of Fig. 2.

Figure 1
A view of (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code (i) $1-x, y, \frac{1}{2}-z$

Experimental

Under an N_{2} atmosphere, solid elemental $\mathrm{S}(0.153 \mathrm{~g}, 4.77 \mathrm{mmol})$ was added to a slurry of $\left[(\mathrm{Ph})_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{As}(\mathrm{Ph})_{2}\right](1.16 \mathrm{~g}, 2.39 \mathrm{mmol}$; Aldrich) in ethanol (50 ml). The mixture was refluxed for 5 h , giving a light-coloured orange-brown solution. Upon cooling and standing overnight, large colourless needles formed that were collected by filtration and dried in vacuo ($0.21 \mathrm{~g}, 16 \%$). Expected for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{As}_{2} \mathrm{~S}_{2}$: C 56.7, H 4.4, S 11.6\%; found: C 56.8, H 4.3, S 12.8\%.

Crystal data

$\left[\mathrm{As}_{2} \mathrm{~S}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]$
$M_{r}=550.43$
Monoclinic, $C 2 / c$
$a=15.976(3) \AA$
$b=9.168(4) \AA$
$c=17.635(3) \AA$
$\beta=107.213(13)^{\circ}$
$V=2467.3(13) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.482 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo-K } \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=10-11^{\circ} \\
& \mu=2.89 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.52 \times 0.12 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer
ω / θ scans
Absorption correction: ψ scan
(EMPABS; Sheldrick et al., 1977)
$T_{\text {min }}=0.713, T_{\text {max }}=0.841$
3937 measured reflections
3573 independent reflections
1815 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& R_{\text {int }}=0.021 \\
& \theta_{\max }=30.0^{\circ} \\
& h=-22 \rightarrow 21 \\
& k=-1 \rightarrow 12 \\
& l=-1 \rightarrow 24 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 167 \text { min } \\
& \text { intensity decay: } 13.2 \%
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.097$
$S=1.01$
3573 reflections
148 parameters

Figure 2
Packing diagrams for (I) showing (a) a view in the direction of the crystallographic [100] vector and (b) a view in the direction of the crystallographic [001] vector.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 (Hursthouse, 1976) and BAYES (French \& Wilson, 1978); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The Biotechnology and Biological Sciences Research Council is thanked for funding.

References

Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Evans, D. J. \& Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
French, S. \& Wilson, K. (1978). Acta Cryst. A34, 517-525.
Hursthouse, M. B. (1976). CAD-4. Queen Mary College, London, England.
Sheldrick, G. M., Orpen, A. G., Reichert, B. E. \& Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford, Abstracts, p. 147.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, M. C. (2002). PhD thesis, University of East Anglia, England.
Smith, M. C., Barclay, J. E., Davies, S. C., Hughes, D. L. \& Evans, D. J. (2003). Dalton Trans. pp. 4147-4151.

